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Since the more recent reviews on excitatory amino acid actions in the
vertebrate central nervous system (1-5) there has been considerable
progress along two particular investigative fronts, leading to firm conclu-
sions about amino acid-mediated synaptic excitation. These two ap-
proaches are, first, the development of new agonists and antagonists for
determining the pharmacological properties of different excitatory amino
acid receptors, and, second, the use of lesioning techniques to determine
the effects of selective neuronal and/or afferent input loss upon regional
levels, uptake, and release of suspected transmitters. A third technique
in widespread use is the study of membrane binding sites for excitatory
amino acids by the use of radioactive ligands. This review correlates the
findings of these three different lines of research, and, in particular, high-
lights gaps in the evidence for amino acid-mediated synaptic excitation
in specific neuronal pathways. Prior to this, however, some recent
neurochemical and pharmacological findings of more general relevance
are discussed.
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NEUROCHEMISTRY

Putative Excitatory Amino Acid Transmitters

Although endogenous excitatory amino acids other than L-glutamate and
L-aspartate are known to occur, or might well occur, in central nervous
tissue the possibility that they could function as transmitters (2, 6-8) has
been essentially ignored. Among known endogenous excitants are L-cyste-
ate (9, 10) and L-cysteine sulfinate (11), while the higher homologues L-
homocysteate and L-homocysteine sulfinate (12, 13) and the thio analogue
S-sulfocysteine (14) occur in other tissues under certain nutritional or
pathological conditions. D-Aspartate has been reported to occur in rela-
tively high concentrations in the cephalopod nervous system (15) and hu-
man lens (16), and Dp-aspartate oxidase has long been known to be present
in the mammalian central nervous system (17-19), though its function is
obscure (2). The common objection that L-glutamate and L-aspartate are
too intimately involved in general metabolic pathways (and particularly in
energy metabolism) to be likely to function in the same manner as the
“classical” peripheral transmitters acetylcholine and norepinephrine, and
the necessity for considering distinct “transmitter” and “metabolic” pools
of the substances in neurochemical studies (1, 20, 21) would not apply to
the other endogenous excitants mentioned above. It is interesting to draw
an analogy between possible brain levels of these amino acids and levels of
dopamine, 5-hydroxytryptamine, norepinephrine (22), and acetylcholine
(23) which occur in concentrations of up to S nmol/g in rat brain. Thus
“low” concentrations of approximately 100 nmol/g reported for L-cysteate
in rat brain (9, 10) should not be discounted. This analogy also serves to
emphasize the analytical difficulty of separating and estimating levels of
amino acids which have chemically similar properties to L-glutamate and
L-aspartate from brain extracts containing up to 1000 or more times those
levels of the latter amino acids. This problem would be particularly difficult
in a search for D-glutamate and pD-aspartate in mammalian central nervous
tissue. However, the observations to be discussed in this review strongly
support the idea that both L-glutamate and r-aspartate do function as
transmitters and, in the absence of any convincing evidence in support of
alternative candidates, no other substances are further considered.

Regional Distribution of Amino Acids and Enzymes

Regional levels of L-glutamate and L-aspartate in the mammalian central
nervous system have been compared in earlier reviews (1, 7). Such data have
not provided any compelling indications of specific regions of transmitter
function for either of the two amino acids mainly because of their general
metabolic function and the ubiquity of their probable transmitter role. An
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exception is, however, the greater concentration of L-glutamate in dorsal
compared with ventral roots (24) and of rL-aspartate in auditory nerve
compared with most other white matter studied (25-27). The concentration
of L-aspartate in the cochlear nucleus parallels the distribution of the audi-
tory nerve endings (25-27). A high concentration of aspartate in the tip of
the ventral horn (four times higher than tip of dorsal horn, and higher than
any other region of the central nervous system) has been reported in the
rabbit spinal cord (28).

Histochemical methods suggest that glutamate dehydrogenase (GDH),
one of several enzymes possibly involved in glutamate synthesis, appears to
be particularly highly concentrated in chick cerebellar glomeruli (29) and
biochemical assays show a relative enrichment of this enzyme in the audi-
tory and optic nerves (30) compared with other nerves. The significance of
such observations would seem to be reduced, however, by the apparent
abundance of GDH in glial cells. Glutaminase, another enzyme possibly
involved in the synthesis of excitatory amino acid transmitters (20, 31-33),
is also relatively concentrated in the auditory nerve (30). Aspartate amino
transferase (AAT) is even more differentially concentrated in the auditory
nerve (30), and immunocytochemical localization of this enzyme at audi-
tory nerve endings within the cochlear nucleus has been demonstrated very
recently (34). An enrichment of AAT in fibers within the chick cerebellar
granular layer was suggested by a lead precipitation histochemical method
(29), which, however, also indicated a localization of the enzyme within
inhibitory basket cell endings. It will be important to see whether such
findings are confirmed by the immunocytochemical method (34).

Evidence for vesicular storage of transmitter amino acids has long been
sought without success. Factors influencing vesicular uptake of L-glutamate
resemble those for acetylcholine and norepinephrine (35). An enrichment
of glutamate and aspartate, along with acetylcholine and GABA, was re-
cently reported in the vesicular fraction from bovine cerebral cortex (36).
However, in another study, no such concentration was found in vesicles
from several different brain regions (37).

Uptake/Inactivation

It is generally accepted that reuptake from the extracellular space is the
process whereby transmitter amino acids are removed from the vicinity of
their receptors and thereby inactivated [see (1, 7, 21, 38, 39) for reviews].
Depending on the concentrations of the transmitters in the synaptic cleft,
both the so-called high and low affinity uptake systems (40) could partici-
pate in such inactivation. Low affinity uptake is probably an important
factor in the inactivation of iontophoretically administered excitatory
amino acids in the mammalian spinal cord (41, 42). Both glia and neurons
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possess the two types of uptake systems for excitatory amino acids [see Hertz
(21)]. It is possible that high affinity uptake into synaptic terminals, and
even into the postsynaptic cell bodies near the receptor sites (43, 44) follows
release of “normal” concentrations of transmitter amino acids during
synaptic excitation, but that glial and intersynaptic perikaryal uptake pre-
vents the spread of “overspill” transmitter to other receptors such as may
occur during hyperexcitation (2). The finding that satellite glial cells can
prevent exogenous glutamate from reaching neurons in dorsal root ganglia
(45) would support this possibility. Schousboe & Divac (46) have suggested
that the efficiency of glial uptake systems for amino acids varies with the
concentration of the amino acid in particular regions, being greater for
glycine in the spinal cord and for glutamate in the striatum, and that a
comparison of the uptakes into cultured glia from different regions may give
indications as to the relevantimportance of the amino acids as transmitters
in those regions.

Of particular significance with respect to both the mechanism of action
of excitatory amino acids and their inactivation is the probable cotransport
of monovalent cations during uptake, two sodium ions accompanying such
uptake of L-glutamate into synaptosomes (47) and a cerebellarneuronal cell
line (48), whereas only one sodium ion is transported with L-glutamate into
glial cells (49). In view of the well-known ability of glial cells also to
accumulate K+ and the enhancement of L-glutamate transport by increases
in extracellular K* concentration (49, 50), co-transport of both Nat and
K* with L-glutamate into glia might be envisaged. The concomitant accu-
mulation of K with L-glutamate and L-aspartate in brain slices has long
been known (51, 52). Uptake of Na* with excitatory amino acids into
neurons could well be associated with depolarization and it may be signifi-
cant that those amino acids that have been shown to be taken up with
sodium ions into cultured cerebellar cells (e.g. L-glutamate, L-aspartate, D-
aspartate, L-cysteate, L-cysteine sulfinate) have been shown to activate a
different population of receptors (discussed below) from those amino acids
that are not good substrates for this uptake process (e.g. D-glutamate, L-
homocysteate, N -methyl-DL-aspartate and kainate) (48). It is noteworthy
also that responses of frog spinal neurons to excitatory amino acids are
differentially affected by variations in the extracellular monovalent cation
concentration (53) and these effects have been correlated with alterations
in rates of uptake of the amino acids by the tissue (50).

Inhibitors of uptake are potentially important not only for characterizing
the transmitter released at particular synapses but conceivably also as new
types of centrally active drugs. For transmitter identification, uptake block-
ers could facilitate collection of a synaptically released transmitter. Also,
specific uptake blockers would be expected to enhance synaptic excitation
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mediated by an excitatory amino acid, so supporting a proposed transmitter
role of such substances at particular synapses. Difficulties of interpretation
would exist, however, where a glutamate/aspartate uptake blocker was
itself a substrate for the uptake system, or where it was an agonist for the
excitatory receptors. Release of glutamate and aspartate from synaptic
endings by hetereoexchange (see 38) might be expected where the uptake
inhibitor was transported into the endings, and any agonist activity of the
uptake inhibitor could result in transmitter release from excited cells. Both
actions might complicate interpretation of the effects of the substance on
transmitter accumulation or action resulting from stimulating specific path-
ways. Thus, the origin of L-glutamate released from guinea pig olfactory
cortex slices on stimulating the lateral olfactory tract in the presence of L-
cysteate (54) must be interpreted with caution, L-cysteate being probably
a substrate for uptake on the glutamate carrier (40) as well as an excitatory
agonist (2).

Two uptake inhibitors that have recently been investigated for their
possible pharmacological usefulness are threo-3-hydroxyaspartate and
dihydrokainate (42, 55). Both D and L isomers of threo-3-hydroxyaspartate
are probably substrates for the excitatory amino acid uptake system(s) (56)
and are also agonists of moderate potency (55). Dihydrokainate is probably
not a substrate for the high affinity 1-glutamate uptake system (57) and has
been reported to be only a weak agonist (58). Our unpublished observations
indicate that dihydrokainate causes slow depolarization of motoneurons in
the isolated frog spinal cord, which may be due to accumulation of sponta-
neously released transmitter. However, although threo-3-hydroxyaspartate
(55) and dihydrokainate (42) both enhance responses of cat spinal neurons
to L-glutamate and L-aspartate, no enhancement of synaptic excitation by
these agents has yet been reported.

It is of interest that responses to the potent excitant quisqualate are also
enhanced by dihydrokainate and threo-3-hydroxyaspartate (42), suggesting
that quisqualate may be taken up into CNS tissue in accord with its rela-
tively fast offset of action. Two excitatory amino acid antagonists to be
discussed below, D-a-aminoadipate (DAA) (59-61) and 3-amino-1-
hydroxy-2-pyrrolidone (HAP) (59, 60), also enhance quisqualate responses,
but have no effect on the uptake of glutamate or aspartate (60). Therefore,
quisqualate may be transported by a separate system from that involved in
the uptake of L-glutamate and L-aspartate. The baclofen analogue, (%)-3-
(p-chlorophenyl) glutamic acid, selectively enhanced responses of frog
motoneurons to L-homocysteate and depressed the uptake of [33S]L-
homocysteate into the frog spinal cord, the actions and uptake of L-gluta-
mate and L-aspartate being little affected by this glutamate derivative (R.
H. Evans, A. A. Francis, D. J. Oakes, and J. C. Watkins, unpublished
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observations). Such observations suggest that uptake systems for excitatory
amino acids may not be as nonselective as usually believed (40).

Vincent & McGeer (62) have described the structural specificity for
inhibition of uptake of [*H]L-glutamate into striatal homogenates. In gen-
eral, a similar pattern of inhibition to that originally described by Balcar
& Johnston (40) for chopped rat brain slices was obtained with the excep-
tion that some inhibition by N-methyl-aspartic acid (presumably the DL
form) was also observed.

Selective reduction following axotomy in high affinity uptake of radiola-
beled glutamate, compared with other putative transmitters, in regions
where specific tracts terminate (e.g. 63, 64) suggest that axon terminals are
a major site of such uptake. This is supported by autoradiographic studies
(64a). High affinity uptake may thus be a useful biochemical marker for
synaptic terminals which release an acidic amino acid as transmitter. The
use of this technique for transmitter characterization and a modification of
the technique utilizing the metabolically more stable [*H]D-aspartate (65)
are discussed below in the section on lesion studies.

Release

Release of excitatory amino acids from central nervous tissue is commonly
investigated in slice or synaptosome preparations or by the use of depolariz-
ing agents such as high K* concentration or veratridine. Neuronal is con-
sidered to be distinguishable from glial release by the Ca?*-dependency of
the former (66) though Ca?*-dependent release of amino acids from glia has
also been reported (67). General aspects of this widely studied phenomenon
have been recently reviewed (1, 21, 38). Some more recent data of a general
nature are emphasized here, while investigations utilizing release measure-
ments in relation to transmitter identification studies involving specific
synaptic pathways is reserved for the final section on lesion studies.
Electrophysiological investigations have suggested that a major action of
the antispasticity drug baclofen [3-(p-chloropheny]) GABA] may be to in-
hibit release of excitatory transmitters (68-71). In conformity with this
possibility, baclofen-induced decreases in the electrically or potassium-
evoked release of excitant amino acids from brain slice preparations have
been reported (72, 73). That this effect may not be specific for excitatory
amino acid transmitters, however, is suggested by reports that baclofen
depressed K*-evoked release of norepinephrine, dopamine, and 5-hydroxy-
tryptamine from slices of rat cerebellar cortex, striatum, and cerebral cor-
tex, respectively, and of norepinephrine from rat atria, and that the drug
also depressed transmission in vas deferens and superior cervical ganglion
preparations (74, 75). These actions were stereoselective, the (-) form being
the more active isomer in both cases. However, depression of peripheral
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transmission by baclofen has been disputed (76-78). Moreover K*-evoked
release of amines from brain slices may be mediated at least in part by
activation of neuronal pathways involving excitatory amino acid transmit-
ters (79-80). It is important that further experiments be carried out to
determine the site of action of baclofen, since if this drug does prove to have
a selective action on presynaptic release of excitant amino acids it will be
extremely valuable in the neurophysiological identification of excitatory
pathways.

Dopamine receptor agonists also have been shown to depress the release
of L-glutamate from striatal preparations, and it has been postulated that
this effect reflects the presence of dopamine receptors on corticostriat-
al terminals (81). Release of excitatory amino acids from brain slices
and synaptosomes is stimulated by the tremorgenic mycotoxins, veru-
culogen and Penetrem A (82), and by the scorpion toxin, tityustoxin (83).
The action of the latter toxin is blocked by tetrodotoxin (83) and mor-
phine (84).

Bradford et al (85) have reported that the K*-and veratrine-induced
release of L-glutamate and r-aspartate varies in different regions of the
striatum, L-glutamate release being evident in the caudate nucleus, puta-
men, and substantia nigra (but not the globus pallidus), whereas L-aspartate
release was observed only in the putamen, and even here, was lower in
magnitude than that of glutamate.

PHARMACOLOGY OF EXCITATORY AMINO ACID
RECEPTORS

Interpretation of neurochemical evidence in terms of the proposed transmit-
ter function for glutamate or aspartate, unlike that for acetylcholine,
amines, or peptides, is complicated by the general metabolic role of the
amino acids. Thus, specific pharmacological antagonists for excitatory
amino acids have long been recognized as essential for definitive characteri-
zation of amino acid-mediated synaptic excitation. The recent development
of such antagonists constitutes a major breakthrough in the study of excita-
tory transmission in the mammalian central nervous system [for reviews see
(2, 8, 86-90)]. Not only are many of these substances selective for excitatory
amino acid-induced responses, having little or no effect on responses to
cholinergic, aminergic, and peptidergic agonists, but these substances are
also selective among amino acid excitants themselves, some agonists being
much more susceptible than others. This has led to the recognition of
different types of excitatory amino acid receptors which have been described
in different terms by different authors. An attempt to unify these concepts
is made below.
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NMDA Receptors

The most clearly defined receptors are those which are activated by N-
methyl-D-aspartate (NMDA) and blocked by a variety of organic and inor-
ganic antagonists (59, 60, 94, 95, 98-102, 105, 106, 112). Some authors (61,
103, 108-111) have referred to these receptors as D-a-aminoadipate
(DAA)-sensitive receptors, DAA having been among the first organic an-
tagonists to be shown to have pronounced and selective activity as an
excitatory amino acid antagonist (59, 99-101, 103, 108). DAA has been
superseded by considerably more powerful and, in some cases, even more
selective antagonists, and if an antagonist is to be used to describe these
receptors, then APV-sensitive receptors would seem to be a more appropriate
term, APV standing for the highly specific NMDA antagonist 2-amino-5-
phosphonovalerate (8, 88-93). However, we prefer the term NMDA recep-
tors since NMDA has been found to be a very selective agonist at these
receptors (Table 2), and this is the agonist of choice to be used, in conjunc-
tion with any of several selective antagonists, to demonstrate the presence
of these receptors. A large number of such antagonists are now known,
though their degree of specificity varies. The actions of some of these
antagonists are summarized in Table 1.

Quisqualate and Kainate Receptors

The actions of selective NMDA antagonists as described above suggested
that some agonists act predominantly at different receptors from those
activated by NMDA. The least susceptible agonists include quisqualate and
kainate, two highly potent excitants of natural origin (2, 58, 113-115).
McLennan & Lodge (61) demonstrated that L-glutamic acid diethyl ester
(GDEE) depressed quisqualate-induced responses, but not responses to
kainate in the cat spinal cord. Similar results were obtained in a separate
study (94). Such observations suggest that the two agonists activate different
receptors. GDEE also depresses responses to L-glutamate and a range of
other excitants (61, 94, 103, 108, 109, 116) and the term GDEE-sensitive has
been used to describe the site of action of the antagonist in depressing these
responses. However, GDEE is not a highly specific antagonist for amino
acid receptors, since it also blocks certain responses to acetylcholine (61,
94). Moreover, subdivisions may later be recognized between amino acid
receptors sensitive to GDEE; thus we prefer the more specific terms of
quisqualate and kainate receptors, rather than GDEE-sensitive receptors,
to describe the predominant sites of action of these two agonists. Additional
support for the idea of different quisqualate and kainate receptors has come
from the use of the NMDA antagonist, y-D-glutamylglycine (DGG), which
in the cat spinal cord markedly depresses kainate-induced responses (in
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Table 1 Specificity of excitatory amino acid antagonists? b

Effectiveness against responses induced by

Antagonist ula NMDA KA Q Ch NE sP References
APV 2 VH NS NS NS NS NS 8,88-93
DAS 16 H L L NS NS 60, 86, 94, 95
DGG 21 H M  M/L® NS NS 8, 88-90, 93,

96,97, 112
BDABA 22 H M-L L NS 8,89,90
Co2* H L L 8,86,98
DAA 42 H L -4 NS NS NS 59,61,99-103
CPG H M L €
PDAf 54 H M —e NS 8, 88-90,93,
104
P,DA 104 M M-L M-L 8,8
HAP M VL VL NS/M-L¢ NS NS 60,99, 101,
102
DAPf 120 M L L NS/L° NS NS 60,99,101,
102
Mg2+ M L VL NS/M¢ L VL 98,105,106
APBf >200 M-L M-L L NS 60,87, 94
GDEE >2000 NS NS M M 61, 94,103

3 Abbreviations: Kp, apparent dissociation constant for NMDA-receptor complex (89,
90); NMDA, N-methyl-D-aspartate; KA, kainate; Q, quisqualate; Ch, cholinergic agonists;
NE, norepinephrine; sP, substance P; APV, (z)-2-amino-5-phosphonovalerate; DAS, D-a-
aminosuberate; DGG, y-D-glutamylglycine; SDABA, g-D-aspartyl-g-alanine; DAA, D-a-
aminoadipate; CPG, (t)-m-carboxyphenylglycine; PDA, cis-2,3-piperidine dicarboxylate;
P;DA, (%)-¢is-2,3-piperazine dicarboxylate; HAP, 3-amino-1-hydroxy-2-pyrrolidinone;
DAP, (%)-a,e-diaminopimelic acid; APB, (t)-2-amino-4-phosphonobutyrate; GDEE, L-
glutamic acid diethyl ester; VH, very high; H, high; M, medium; L, low; VL, very low;
NS, no significant effect observed.

bOther compounds which have been shown to have NMDA antagonist actions but which
have not been fully investigated with respect to their actions at other receptors include
D-5-amino-hex-2-enedioic acid (107); D-a-aminopimelate, (+)-a,6-diaminoadipate, (¢)-2,6-
diaminosuberate, (%)-2,7-diaminoazelaate, (+)-a-aminoazelaate (60); y-D-glutamylphen-
ylalanine, <y-D-glutamyl-p-chlorophenylalanine, 7vy-D-glutamyl-g-alanine, ‘y-D-glutamyl-
GABA, y-D-glutamylleucine, §-D-aspartylglycine (8); (+)-2-amino-6-phosphonohexanoate,
(%)-2-amino-7-phosphonoheptanoate, (t)-2-amino-8-phosphonooctanoate, g-D-aspartyl-
GABA, 4-(8-D-aspartyl)-2,4-diaminobutyric acid, 8-D-aspartyltaurine, g-D-aspartylamino-
methylphosphonate, g-D-aspartylaminoethylphosphonate.8

€ Differing assessments, relating to bath/iontophoretic methods of administration.

dResponses potentiated (59, 61), possibly due to inhibition of uptake of quisqualate
(see Uptake/Inactivation section).

€ Responses potentiated, probably due to the partial NMDA agonist activity of PDA (88,
89, 93, 104).

f The (-) forms are the more active isomers (8, 60).

ER. H. Evans, A. A. Francis, A. W. Jones, and J. C. Watkins, unpublished observations.
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addition to responses induced by NMDA)) whereas responses to quisqualate
are relatively insensitive to the dipeptide (93, 96, 97).

What appears to be a relatively pure population of kainate receptors,
which may or may not be similar to those within the spinal cord, is present
on fibers in dorsal roots of neonatal rats (87, 117). Quisqualate is a much
weaker agonist than kainate at these receptors, whereas in the spinal cord
itself, quisqualate is the more potent agonist. Such nonsynaptic kainate
receptors are effectively blocked by cis-2,3-piperidine dicarboxylate (PDA)
(88), and less effectively by relatively high concentrations of 2-amino-4-
phosphonobutyrate (APB) and GDEE (87).

The Mixed Agonist Action of L-Glutamate and L-Aspartate

L-Glutamate and L-aspartate are mixed agonists in that their actions are
depressed by all the antagonists of Table 1, though usually only partially
(90). However, responses to L-aspartate are frequently much more sensitive
to NMDA blockers, particularly in the spinal cord, than are responses to
L-glutamate (59, 60, 86-90, 94, 95, 98-102, 105, 106), whereas L-glutamate
is somewhat the more susceptible agonist to the blocking action of GDEE
(61, 103, 118, 119). This suggests that, at least for some cells within the
spinal cord, NMDA receptors make a greater contribution to the composite
responses induced by L-aspartate than to the composite responses induced
by L-glutamate, while quisqualate receptors contribute more to the L-gluta-
mate than to the L-aspartate-induced responses. This deduction finds sup-
port from the action of DGG in the mammalian spinal cord in vivo, where
responses to L-glutamate parallel those to quisqualate in being relatively
insensitive to DGG, whereas responses to L-aspartate, like those to NMDA,
are easily blocked by the dipeptide (88, 93, 97). L-Glutamate is also an
effective agonist at kainate fiber receptors, whereas L-aspartate is a poor
agonist at these receptors (87). This finding again points to different effica-
cies of the two putative transmitters at different receptors.

It must be emphasized that the relative antagonism of responses to L-
glutamate and L-aspartate has to be interpreted with caution, as such differ-
ential effects will depend not only on the relative efficacies of the agonists
at the different receptors mediating the composite response, but also on the
relative abundance of the different receptors and the specificity of the antag-
onist used (90). Moreover, comparison of excitation induced by exogenous
amino acids with synaptic excitation is complicated because the two types
of excitation may be mediated by different populations of receptors. This
would be particularly important if extrasynaptic receptors (e.g. of the kai-
nate fiber type) contribute significantly to the effects of exogenous
excitants. For similar reasons, comparison of the relative potencies of L-
glutamate and L-aspartate on different groups of cells (120-122) are un-
likely to be as informative as using the more selective receptor agonists,
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NMDA, kainate, and quisqualate. Large differences in the relative poten-
cies of kainate and NMDA have been found in different groups of spinal
neurons (123), suggesting a regional heterogeneity in the distribution of
NMDA and kainate receptors in the spinal cord.

The Action of Other Excitants
Most amino acid excitants resemble L-glutamate and L-aspartate in having
mixed actions on different receptors. Approximate rank orders for the
susceptibilities of a range of agonists to NMDA antagonists and GDEE (61,
87, 94, 103, 110, 124) are shown in Table 2. With the exception of kainate,
GDEE shows generally the reverse pattern of activity to NMDA antago-
nists though its potency is very much lower. Relative agonist potencies for
depolarizing the nonsynaptic receptors on dorsal root fibers in the baby rat
(87, 117) are also indicated in Table 2.

Attempts have been made to define the structural requirements for in-
teraction with the different receptors by investigating the actions of com-
pounds with conformationally restricted structures. The predominant

Table 2 Relative susceptibilities of excitants to antagonism by NMDA receptor blockers
and GDEE, and relative potencies of excitants at depolarizing dorsal root fiber receptors?

Susceptibility to

Relative NMDA Agonist potency
effect antagonists GDEE at fiber receptorsb
Very high NMDA Domoate
to high NMLA

2,3-trans-PDA

2,4-frans-PDA

Ibotenate Kainate
L-Homocysteate

D-Glutamate

cis-ADCP

Moderate L-HCS L-Cysteate L-Glutamate
D-Homocysteate L-Glutamate
L-Aspartate Quisqualate Quisqualate
D-Aspartate L-Aspartate
L-CSA D-Glutamate
L-Cysteate Ibotenate
L-Glutamate L-Homocysteate

Low to Quisqualate Kainate L-Aspartate

undetected (+)-Willardiine ADCP (2)-Willardiine

Kainate NMDA/NMLA NMDA

3 Abbreviations: NMDA, NMLA, N-methy!-D- and L-aspartate; 2,3- and 2,4-trans-PDA,
2,3- and 2.,4-trans-piperidiné dicarboxylate; cis-ADCP, cis-1-amino-1,3-dicarboxycyclo-
pentane; L-HCS, L-homocysteine sulfinate; L-CSA, L-cysteine sulfinate.

bDorsal root fibers of the neonatal rat.
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activation of NMDA receptors by such glutamate analogues as trans-2,4-
PDA (8 88-90), ibotenate (60, 61, 87, 94, 103, 110), ibotenate relatives
(116) and cis-ADCP (110), in addition to the aspartate analogue, trans-
2,3-PDA (8, 88, 89) (Table 2), and the antagonist actions of the aspartate
analogues PDA and P,DA (Table 1), may be explained by a preference of
the NMDA receptor for a relatively extended aspartate conformation and
a slightly folded glutamate conformation (8, 88). On the other hand, longer-
chain .agonists such as L-a-aminoadipate (125), 4-bromohomoibotenate
(116), and a-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA)
(116) interact more effectively with non-NMDA (DA A-insensitive) recep-
tors that are sensitive to blockade by GDEE. Whether this should be
interpreted in terms of a greater or lesser intercarboxyl separation in the
effective conformation of the agonists compared with that preferred by the
NMDA receptor is debatable. McLennan (125) has argued in favor of
reduced minimum intercarboxyl distances, permitted by the greater flexibil-
ity of the longer-chain molecules, as being a factor in the predominant
action of these compounds on non-NMDA receptors. No conclusions have
yet been drawn with respect to kainate fiber receptors, but an unsaturated
side chain may be important for high agonist activity. The ability of cis-
2,3-piperidine dicarboxylate to antagonize all three classes of receptors (88,
89, 93, 104) suggests that the conformational specificities of the \receptors
may be very subtle. N

Other Excitatory Amino Acid Antagonists

Various other agents have recently been proposed as excitatory amino acid
antagonists, but in general their specificity is poor compared with most of
the substances described above or has not been fully investigated.

Nuciferine, an alkaloid structurally related to 9-methoxyaporphine, has
been reported to block responses to kainate more effectively than those to
NMDA (126) but subsequent experiments have failed to confirm this con-
clusion (127, 128). Its spectrum of action (128) resembles that of GDEE
rather than NMDA antagonists. Nuciferine is not selective for amino acid-
induced responses and appears to have some local anesthetic properties
(129).

SP 111, a tetrahydrocannabinol derivative, was reported by Segal (130)
to block L-aspartate-induced excitation of hippocampal cells, and also to
potentiate depressant effects of norepinephrine and GABA in the cerebel-
lum. Acetylcholine-induced excitation of hippocampal neurons was less
sensitive to the drug.

Thyrotropin-releasing hormone (TRH) has been reported to block L-
glutamate-induced responses more effectively than those induced by acetyl-
choline or L-aspartate (131). However, excitatory effects of this compound
have also been reported (132).
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Chlorpromazine, diazepam, and amitriptyline all have differential actions
on amino acid-induced responses in the frog spinal cord (133), which in
general resemble those of the more recently discovered selective NMDA
antagonists described in the preceding section. However, the well-known
local anesthetic and other effects of these drugs on CNS activity would
render them unsuitable as pharmacological tools for the study of amino
acid-induced excitation.

Pentobarbitone depresses excitatory amino acid—induced responses in a
relatively nonselective manner (133-136). However, this effect is not specific
to amino acids since pentobarbitone also depresses acetylcholine-induced
responses in the cerebral cortex (137), and cholinoceptor-mediated excita-
tion in sympathetic ganglia (138). The GABA-mimetic actions of pentobar-
bitone (134, 139-141) would also contribute to its depressant effects.

Depressant Actions of Excitatory Amino Acids

Certain inhibitory effects of acidic amino acids have sometimes been ob-
served [for review, see (3)]. It has been suggested that the ability of ibote-
nate, unique among a range of excitatory amino acids, to produce
long-lasting depression of cat spinal neurons is due to a high affinity of this
substance for a specific class of inhibitory receptors (142). An alternative
explanation of this phenomenon, however, is that it is caused by the break-
down of microelectrophoretically administered ibotenate to the potent
depressant, muscimol (143).

Binding Studies

Following the pioneering work in this area by Roberts (144) and Michaelis
(145) using [*H]L-glutamate, and by Simon et al (146) using [*H]kainate,
numerous studies have been carried out on the binding of these and other
ligands to brain membranes. Such studies have been reviewed by Coyle
(147), Johnston (148), Nistri & Constanti (3), and Roberts & Sharif (149).
Recent investigations in various areas of the central nervous system include
the use of [*H]L-glutamate in cerebral cortex (144), striatum (150), cerebel-
lum (149, 151, 152), hippocampus (153-156), multiple regions (157);
[PH]kainate in striatum (158-160), retina (161), cerebellum (162), multiple
regions (163), different tissues and organisms (164); [PH]L-aspartate (149)
and [*H]N-methyl-D-aspartate (165) in cerebellum; and [*H]p-aspartate in
cerebral cortex (148). In general, the results have not yet led to a clarifica-
tion of the types of excitatory amino acid receptors and their functional
significance. Also it must be emphasized that the presence of receptor sites
does not necessarily indicate the presence of a transmission system. For
instance, kainate (87, 117) and GABA receptors (166) are known to occur
at extrajunctional sites. Here we summarize some of the main conclusions
to emerge from this work.
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[Hl.-GLUTAMATE BINDING Two types of binding sites can be differen-
tiated. Na-dependent binding appears to be associated with sites of uptake
of excitatory amino acids (144, 150, 156), while Na-independent sites may
be associated with one or more types of pharmacological receptors (144,
147, 149, 151, 156, 157). A detailed investigation of the distribution of the
two types of binding sites has been made, the hypothalamus and cerebral
cortex showing the highest concentrations of the Na-independent and Na-
dependent binding sites, respectively (157). Inhibition studies suggest differ-
ences in the structural specificities of Na-independent sites in different
regions (144, 147, 149, 151, 156, 157), possibly as a consequence of variation
in the proportions of the pharmacologically distinct types of excitatory
amino receptor discussed above but possibly also because of methodological
differences in membrane preparation (166). However, while quisqualate
sometimes inhibits L-glutamate binding (151, 157), inhibition by NMDA or
kainate has never been observed. L-Aspartate has usually been found to be
a moderate to very effective inhibitor, though p-aspartate and D-glutamate
[which are similarly potent to the L forms as excitants, ref. (2)] are usually
very weak. Among excitatory amino acid antagonists, DL-a-aminoadipate
and APB show moderate activity as inhibitors of L-glutamate binding, but
GDEE is very weak (151, 156, 157).

Baudry and colleagues (153, 154) have shown that the divalent cations
Ca?* and Mn?* enhance binding of L-glutamate to hippocampal mem-
branes and that this effect is associated with activation of a protease enzyme
(153). Ca-dependent binding is very much more pronounced in the hip-
pocampus than in the cerebellum (153). Sodium ions inhibit binding of L-
glutamate to hippocampal membranes at low concentrations and potenti-
ate binding at higher concentrations (154, 156), the latter effect presumably
being a reflection of binding to uptake sites. Potassium ions enhanced
binding at low (< 5 mM) and inhibited binding at higher concentrations.
The relationship between these K* ion effects on glutamate binding and the
effects of K+ ions on uptake of the amino acid (see section on Uptake/Inac-
tivation) remains to be elucidated.

Using low concentrations of the ligand, Biziere et al (157) recognized
additional Na-independent binding sites for L-glutamate with X, values of
11 and 80 nM. The inhibitor pattern for this very high affinity glutamate
binding appeared not to be markedly different from that of the “usual” high
affinity mode (K, 0.1-1 uM). Marked regional variation was observed, but
in general the pattern of very high affinity binding resembled that of Na-
dependent rather than Na-independent binding observed in other studies
(156).

Michaelis (169) isolated a glutamate-binding glycoprotein from whole
brain synaptosomal membranes which shows similar kinetic and inhibitor
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characteristics to those of binding sites for glutamate in the original mem-
branes. This glycoprotein contains Fe which may be involved in coordina-
tion complexes with excitatory amino acid ligands. Both the native binding
sites in synaptic membranes and the isolated glycoprotein were inhibited by
iron-bonding agents such as azide. However, Sharif & Roberts (152) have
shown that pretreatment of cerebellar membranes with azide potentiated
rather than depressed the binding of L-glutamate. It is interesting that
6-hydroxyDOPA, which is an excitatory amino acid (113), inhibits the
binding of glutamate to the glycoprotein, which raises the possibility that
both effects may be related to the ability of this substance to coordinate with
iron (169, 170).

Michaelis et al (171) have shown that ethanol and chlorpromazine both
cause enhancement of L-glutamate binding to brain synaptic membranes.
They suggest that this enhancement may reflect effects of these drugs on
receptor-ionophore coupling. A proteoplipid isolated from brain by De
Robertis & Fiszer de Plazas (172, 173), which stereoselectively bound L-
glutamate and had considerably lower affinity for L-aspartate, appears not
to have been further studied.

[PHJ.-ASPARTATE BINDING While the kinetic parameters for the Na-
independent binding of this ligand to cerebellar membranes are not greatly
different from those for L-glutamate, marked differences occur in the inhibi-
tor pattern for the two ligands (149). In particular the NMDA antagonists
DL-a-aminosuberate and HAP were effective and selective inhibitors of the
aspartate binding. However, another NMDA antagonist, DL-a-aminoadi-
pate, was less effective on L-aspartate than on L-glutamate binding while
NMDA itself was devoid of inhibitory activity. Thus it seems unlikely that
this binding site is the NMDA receptor, although some of the above anoma-
lies may be due to the use of racemates rather than pure optical isomers.
Moreover, Ramirez et al (174) have reported that while NMDA had little
effect on [*H]glutamate binding to chick retinal membranes, it had different
effects on [*H]L-aspartate binding in this preparation according to the pro-
tein concentration in the assay system, marked inhibition of aspartate bind-
ing occurring at low protein concentrations, and enhancement of binding
occurring at high protein concentrations. The important implication of this
phenomenon with respect to the constitution and stability of the L-aspartate
binding sites warrants detailed investigation.

The inhibitor pattern for L-aspartate binding sites in brain membranes
shows similarities to and differences from the aspartate-binding proteoli-
pid previously extracted from rat cerebral cortex by De Robertis and col-
leagues (172) and the relation between these two entities remains to be
established.
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[HIKAINATE BINDING Sodium-independent binding sites for this li-
gand are distinct from those for L-glutamate or L-aspartate since kainate is
not an inhibitor of the binding of either of the latter two amino acids (149,
151, 157). This accords with the difference between pharmacologically
defined receptors for kainate and those for glutamate or aspartate as de-
scribed above. A difference between binding sites for kainate and L-gluta-
mate is further emphasized by the finding that kainate binding was
depressed by 50% in membranes treated with Na cholate whereas L-gluta-
mate binding was moderately increased (175). It has been estimated that the
number of binding sites for L-glutamate exceeds those for kainate by ap-
proximately 10-fold (57, 146). L-Glutamate and quisqualate can apparently
interact with kainate binding sites to a moderate extent, but L-aspartate is
a very weak inhibitor and NMDA is inactive (57, 146, 157, 158, 162, 163).
A number of ions inhibit kainate binding in the striatum, Ca?* and Mn?t
being the most potent with 1Csq values of around 2 mM (159).

London & Coyle (163) have recognized two binding sites for kainate with
Kp values of approximately 10 and 40 nM, inhibitor patterns being gener-
ally similar for both sites but with some exceptions. The higher affinity sites
are most concentrated in striatum and the lower affinity sites in the cerebel-
lum and medulla/pons.

A physiological role of kainate receptors is suggested by the discovery
that high affinity kainate binding to striatal membranes increased dramati-
cally during maturation of animals from birth (176).

[H]o-ASPARTATE BINDING Preliminary studies on the Na-independent
binding of this ligand to triton-extracted rat brain membranes suggest that
these binding sites have an affinity for NMDA, L-aspartate, L-glutamate,
and pL-a-aminoadipate; these substances inhibit [*H]p-aspartate binding
with that descending order of potency (148). Such an order of inhibitory
action, particularly the potency of NMDA, which has been found to in-
teract with amino acid binding sites in only two other studies (165, 172),
suggests the possibility that D-aspartate binding sites are NMDA receptor
sites. However, except for the action of Mg?*, which has been reported to
inhibit the excitatory responses of D-aspartate (105), this amino acid gener-
ally resembles L-glutamate rather than NMDA with respect to the phar-
macological profiles of their excitatory actions (60, 94, 103).

PHINMDA BINDING This ligand has been reported to bind to cerebellar
membranes with an inhibitor spectrum similar to that which would be
expected if the binding sites and NMDA receptors were the same (165).
However, other studies have failed to confirm these effects (H. J. Olverman
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and J. C. Watkins, unpublished observations), and in view of the observa-
tion of Ramirez et al (174) described above, certain difficulties may be
encountered in the study of membrane binding sites for this substance.

In conclusion, it is difficult to compare excitant potency of agonists with
chemical binding data because excitant responses are a function of efficacy
and affinity whereas binding reflects affinity only. This is not a complication
in the case of antagonists where chemical binding constants should compare
directly with pharmacological values calculated from dose ratios (see 177).
It is therefore to be hoped that future studies with radiolabeled antagonists
will resolve some of these problems.

MECHANISMS OF ACTION
Agonists

MEMBRANE CONDUCTANCE There is considerable evidence support-
ing the concept that excitatory amino acids cause neuronal depolarization
by increasing the membrane permeability to sodium ions (24, 39). How-
ever, this concept implies that amino acid—induced depolarization should
be accompanied by an increase in membrane conductance, as shown for
synaptic activation of cat spinal neurons (178). While this is true for some
amino acids, particularly kainate (179, 180), membrane conductance may
be either increased or decreased by L-glutamate or L-aspartate (179-184).
The effect of L-glutamate is usually to increase membrane conductance at
high concentrations of the amino acid whereas low concentrations may
cause a decrease (181, 182). Only a decrease in membrane conductance has
been observed with NMDA (179, 180). p-Homocysteate likewise causes a
decrease in membrane conductance, but L-homocysteate produces a con-
ductance increase (135, 182). The increases in membrane conductance ob-
served with L-glutamate, L-aspartate, and L-homocysteate may be
associated with uptake of these amino acids (41, 182); however, such an
explanation is unlikely to apply to kainate, which is not taken up by central
nervous tissue (57). It is therefore probable that these effects involve not
only differential ionic concomitants of uptake but also different ionic mech-
anisms of receptor activation. In particular, NMDA receptor activation
may be associated with a decrease in membrane K+ conductance as sug-
gested for pL-homocysteate (182), which acts substantially on NMDA
receptors (60). Shapovalov et al (184) attribute the conductance changes
induced by L-glutamate in amphibian motoneurons to an increase in Na*
conductance and a decrease in K* conductance, while Engberg et al (182)
have also suggested this mechanism for the excitatory postsynaptic poten-
tials of cat motoneurons. Application of L-glutamate or synaptic excitation
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of lamprey reticulospinal neurons increases permeability to both Nat and
K* (185). It is possible that the extent of the Na* and K+ conductance
changes produced by different excitatory amino acids varies with the type
of receptor activated, or even with the mode of interaction of different
amino acids with the same receptors. Another possibility is that different
amino acids (or activation of different receptors) may produce different
effects on Ca?* fluxes (186), which could indirectly affect monovalent ion
transport (66).

However, such conductance measurements are usually recorded through
electrodes placed in the somata of motoneurons, whereas the electrophoreti-
cally applied agonists can act at sites near to or distant from the somatic
recording site. Thus if, for example, NMDA receptors were distributed only
at excitatory synaptic locations [which are considered to be mainly den-
dritic (187)], but receptors with which L-glutamate interacted were distrib-
uted more widely, such a differential receptor distribution would be
expected to complicate the measurement, at somatic sites, of conductance
changes induced by these two amino acids. It may be relevant that de-
creased membrane conductance of leech neurons following periods of in-
tense activity has been attributed to electrogenic pump action (188).
Possibly NMDA, by acting discretely at dendrites, mimics such activity and
the decreased conductance observed at motoneurons (179) may reflect an
electrogenic response at the soma to ionic changes, possibly Nat entry, at
dendrites.

Suggested decreases in neuronal K* conductance produced by excitatory
amino acids (182, 184) are hard to correlate with the marked increases in
extracellular K* concentration that occur in association with excitatory
amino acid action (189, 191, 192) irrespective of the type(s) of receptors
activated, although extracellular K* accumulation could well be due, at
least partially, to passive redistribution of these ions in response to the
neuronal depolarization, as occurs with the late phase of synaptically
evoked primary afferent depolarization (193, 194). Extracellular K* accu-
mulation has been postulated to explain excitatory amino acid-induced
depolarization of primary afferent terminals (189) as against a direct action
of the amino acids on presynaptic receptors (190). Such excitant-evoked
increases in extracellular Kt may also be relevant to the variable effects of
excitants on membrane conductance (179, 180, 182). For instance, the
initial stages of potassium depolarization might be expected to be associated
with decreased membrane conductance through the mechanism of anoma-
lous rectification. Lambert et al (182) claim that excitant-induced decreases
in conductance cannot be entirely accounted for by anomalous rectification,
but very recent results from their laboratory have indicated large differences
between “effective” transmembrane potential changes and potential
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changes measured conventionally with a distant indifferent electrode (195,
196). This phenomenon introduces a serious problem in the measurement
of membrane current/voltage relationships. Maintained depolarization has
been shown to increase conductance in the squid giant axon (197) and in
spinal motoneurons (198), and high levels of increased external Kt have
been shown to cause a large increase in membrane conductance of snail
neurons (199). Thus a possible role of K+-induced potential and conduc-
tance changes in the observed action of excitant amino acids should not be
discounted.

EFFECTS OF EXCITANTS ON CYCLIC NUCLEOTIDE SYNTHESIS
Stimulation of both cyclic AMP and cyclic GMP synthesis by excitatory
amino acids has been observed in brain slice preparations (200-208). These
effects are Ca?*-dependent (200) and since other depolarizing agents have
similar actions (204, 207) it is likely that the observed stimulation by
excitatory amino acids is secondary to depolarization, possibly involving
Ca?t influx. Although it has been argued that similar stimulation of cyclic
nucleotide synthesis by high concentrations of K* in the extracellular fluid
may be due to release of excitatory amino acids and adenosine (207), the
reverse interpretation would seem equally possible, i.e. that the effects of the
amino acids are due to K+ release (189, 191, 192). Stimulation of cyclic
GMP production in cerebellar slices (200, 209-214) (for review see 212)
depends on the morphological integrity of the tissue, which again suggests
that such effects are secondary to depolarization, rather than involved in the
depolarization mechanism itself. However, it is noteworthy that low con-
centrations of guanine nucleotides inhibit the binding of [PH]L-glutamate to
cerebellar membranes (213), suggesting a possible association between gua-
nyl cyclase and the receptor.

Although probably secondary to depolarization such stimulation of cy-
clic nucleotide production by excitatory amino acids provides a useful
chemical means of studying differential receptor activation. In the imma-
ture cerebellum, NMDA is the most potent excitant for stimulating cGMP
production while kainate is relatively weak. In the adult animal, however,
kainate is the more potent stimulator, the difference being attributable to
the development with age of a new population of discrete kainate receptors,
an effect reminiscent of the increase in striatal binding sites for kainate
during development (176). Kainate-induced cGMP formation in the adult
is resistant to NMDA blocking agents, while in the immature animal the
effects of both NMDA and kainate are blocked by such antagonists, sug-
gesting that, in the immature animal either both agonists act at the same
(NMDA) receptors (though with markedly different efficacies), or the effect
of kainate may be relayed transynaptically via a transmitter acting at
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NMDA receptors. L-Glutamate- and L-aspartate-induced cGMP produc-
tion is not affected in either the adult or immature cerebellum by NMDA
blockers, suggesting that the putative transmitters interact predominantly
with receptors that are distinct from both kainate and NMDA receptors.
It will be important to determine in future studies whether any correlation

- exists between these receptors and the quisqualate-type receptors distin-

guishable pharmacologically and discussed above. A possible indication of
such a relationship is the sensitivity of the L-glutamate-induced stimulation
of cGMP production to blockade by GDEE (214). '

Similar results have been obtained with cerebellar cultures with the ex-
ception that L-glutamate and L-aspartate were markedly more effective
(100- and 20-fold respectively) in this preparation than in slices. Such
enhanced effects are probably attributable to the avid uptake of the amino
acids in slices, which would be expected to limit their access to receptors
(41, 57, 215).

Antagonists

The action of monoamino and diamino dicarboxylic acids related to p-a-
aminoadipate and a,e-diaminopimelate appears to be competitive with ago-
nists for the NMDA receptor (60). Intracellular recording in cultured
mouse spinal neurons showed no effect of bL-a-aminoadipate on membrane
potentials or passive membrane properties (216). A similar lack of effect on
membrane parameters has been observed in hippocampal neurons with
DGG (217). Thus it appears that the organic NMDA antagonists act simply
by blocking access of the agonists to the receptors and do not themselves
induce potential or conductance changes.

Mg?* and the organic antagonists act at different membrane sites (218).
The divalent cations probably act by decreasing the affinity of the agonist
for the receptor or by interfering with receptor-ionophore coupling (86).
Alterations in extracellular Mg?* concentrations associated with synaptic
activity may regulate the sensitivity of the NMDA receptor to an excitatory
amino acid transmitter (86).

ROLE OF AMINO ACID RECEPTORS IN SYNAPTIC
EXCITATION

There is little doubt that NMDA receptors are involved in spinal synaptic
excitation (8, 88). Thus, for series of selective NMDA antagonists, depres-
sion of dorsal root—evoked excitation of motoneurons in the frog spinal cord
parallels depression of amino acid-induced depolarization (60). Again, all
known NMDA antagonists, irrespective of their chemical specificity, have
the ability to depress synaptic excitation in the mammalian and amphibian
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spinal cords (60, 88-94, 96, 97, 104, 111, 112). Synaptic excitation has also
been antagonized by these agents in other regions of the central nervous
system: cerebral cortex, cuneate nucleus (219), caudate nucleus (220); lat-
eral geniculate body (221); hippocampus (217, 222); cochlear nucleus (223,
224); cerebellum (225). Therole of these studies in transmitter identification
at specific synapses is described below.

It is less certain that either kainate or quisqualate receptors are also
involved in synaptic excitation. Although the quisqualate antagonist GDEE
has been found to depress synaptic excitation in several regions [cerebral
cortex (226); thalamus (118); striatum (220, 227); lateral geniculate body
(221); hippocampus (217, 222, 228, 229)), its lack of specificity as an amino
acid antagonist (61, 94, 221), its relatively low potency, and its effect on
spike height at higher concentrations (103) make this substance of some-
what doubtful value for transmitter receptor characterization. Intracellular
investigation (230, 231) has raised additional questions as to the mode of
action of GDEE. Preliminary studies with DGG and PDA have, however,
provided supporting evidence that quisqualate and/or kainate receptors
may be involved in synaptic excitation in addition to NMDA receptors.
Thus APV- or DA A-insensitive synaptic excitation in the spinal cord (89,
93) or caudal trigeminal nucleus (232, 233) has been shown to be sensitive
to DGG and/or PDA.

TRANSMITTER IDENTIFICATION IN SPECIFIC
PATHWAYS

Problems associated with transmitter identification within the vertebrate
central nervous system have been discussed by Curtis (4). Among the many
criteria that would need to be fulfilled, a transmitter candidate would need
to be shown to be released from the endings of afferent fibers and, when
added exogenously, to exert an identical action at postsynaptic sites to that
produced by afferent stimulation.

The release criterion would seem extremely difficult to fulfil with present
techniques in the case of short axon interneurons that cannot be stimulated
selectively. Less difficulty would be expected in demonstrating release of
putative transmitter candidates from the central endings of peripheral affer-
ent fibers or from the terminals of well-defined tracts within the central
nervous system, particularly if specific inhibitors of uptake can be found.
Dihydrokainate may prove useful in this respect (see Uptake/Inactivation
section).

The identity of action criterion is also difficult to meet, especially where
an exogenous transmitter may activate different receptors from those ac-
tivated by the endogenous transmitter released synaptically. Thus, the vari-
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ableincrease or decrease in membrane conductance produced by exogenous
L-glutamate (discussed above) may reflect actions at different receptors in
differing proportions according to concentration and/or locus of action.
Nevertheless, this criterion may be at least partially satisfied by the use of
receptor-specific antagonists. Several NMDA antagonists (especially APV,
which has a specificity and potency for NMDA receptors probably higher
than that of bicuculline for GABA receptors) would appear to be satisfac-
tory for characterizing the action of a transmitter at specific synapses as
being similar to or different from that produced by NMDA. Similarly
specific antagonists are likewise needed for exogenous agonists such as
quisqualate and kainate in order to determine whether any endogenous
transmitter acts at these types of receptors. It must be emphasized, however,
that similarity of receptor activation by exogenous candidate and endoge-
nous transmitter identifies the receptor rather than the transmitter. Dis-
crimination between mixed agonists such as L-glutamate and L-aspartate is
difficult if not impossible by pharmacological means alone and such tech-
niques are best employed in conjunction with lesion studies in order to
deduce which of these two amino acids is the more likely transmitter
released at specific synapses.

Lesion Studies

A major technique employed in neurochemical studies is to destroy discrete
regions of central nervous tissue and to compare chemical parameters be-
fore and after this procedure. The lesions may be of various types, for
instance, the surgical sectioning of specific nerves or tracts, ablation of
whole areas or nuclei, neuronal destruction with potent “excitotoxic”
amino acids such as kainate, which spares axons of passage and synaptic
endings of extrinsic neurons, the use of X rays to destroy specific popula-
tions of cells in the cerebellum, viral destruction of discrete cerebellar cell
types, 3-acetylpyridine—induced destruction of climbing fibers in the cere-
bellum and controlled ischemia to selectively destroy interneurons in the
spinal cord; in addition, the neurochemistry of mutant animals with well-
defined neurological deficits has been compared with that of normal animals
(for references, see Table 3).

The aim of such studies—whatever the precise nature of the lesions
employed (or of the neuropathology in mutants)—is to correlate the neuro-
chemical differences that occur between normal and lesioned (or mutant)
tissue, with the reduction of specific cell types or afferent fibers and endings.
Thus, if presynaptic terminals are caused to degenerate, their transmitter
stores might be expected to be depleted along with enzymes of synthesis.
Moreover, where reuptake into terminals is a major factor in transmitter
inactivation and/or conservation, uptake into the synaptosomal fraction
prepared from the area of terminal degeneration should be depleted. This
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is sometimes investigated using [*H]D-aspartate (234) which is taken up
similarly to L-glutamate and L-aspartate but which is metabolically more
stable after uptake (65). Finally, Ca?t-dependent release of the putative
transmitter evoked by depolarizing stimuli should be diminished. Where
lesions cause postsynaptic degeneration without loss of afferent terminals
the main change might be expected to be a decrease in transmitter receptor
sites—hopefully reflected in a decrease of specific binding of radioactively
labeled transmitter agonists or antagonists. The main difficulties in interpre-
tation of the results of such studies include the following: )

1. L-Glutamate and L-aspartate are so intimately involved in cellular
metabolism that neurochemical changes occurring as a result of lesions
could be due simply to a metabolic response to injury in the short term and
to altered densities of cell types, particularly glia, in the longer term.

2. Not only presynaptic but also postsynaptic lesions would alter uptake
and release of putative transmitters, in so far as cell bodies are able to
participate in such phenomena (43—45) and/or where a significant density
of short axon cells are contained within the lesioned area.

3. Ca?*-dependent release, which is usually regarded as having a synap-
tic terminal origin (21), has been observed from glia in dorsal root ganglia
(67) and such release may therefore not be confined to terminals or even
to neurons.

4. The identity of kinetic and/or structural parameters of binding sites
in degenerating or regenerated tissue with those of unlesioned tissue cannot
be assumed; for instance, desensitization or changes leading to supersen-
sitivity may have taken place, or even changes in the concentrations of
modulatory components of the receptors.

5. Where radioactive L-glutamate, L-aspartate, or D-aspartate are used
to study changes in uptake following lesions, no deductions can be drawn
about whether the transmitter used by the degenerated terminals is more
likely to be L-glutamate or L-aspartate, since all three amino acids are
apparently transported by the same systems (40, 65).

6. The specificity of the lesions, be they produced by surgical section of
specific tracts, or by different types of physical, chemical, or biological
damage, may not be known with certainty. For instance, the extent of
kainate-induced lesions has been found to depend, in certain cases, on the
integrity of afferent systems to the lesioned area (160, 235-237) thus im-
plicating presynaptic mechanisms in the excitotoxic action. Furthermore,
lesions in the limbic system can occur at sites distal to the kainate injection
(237). In some cases distant damage may relate to diffusion of kainate from
the original injection site (238). Thus kainate should be used with caution
as a selective lesioning agent. For a detailed account of problems in the use
of kainate as a selective lesioning tool see reference (239).

These difficulties notwithstanding, considerable information pertinent to
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the special chemical properties of relatively discrete cell populations and/or
synaptic pathways has been adduced from such studies. When collated with
pharmacological data, a strong case can be made in favor of L-glutamate-
or L-aspartate-mediated synaptic excitation in many regions of the central
nervous system. A compilation of such data is presented in Table 3. [For
references to the excitation of neurons by L-glutamate and L-aspartate in
these and other regions of the central nervous system see (7).]

CONCLUDING REMARKS

With the advent of selective antagonists for amino acid—induced excitation,
the long postulated role of acidic amino acids (or very similar substances)
as transmitters in synaptic excitation in the vertebrate central nervous
system can no longer be seriously doubted. As shown by Table 3, blockade
of synaptic excitation by specific amino acid antagonists has now been
demonstrated in a number of specific pathways. This adds compelling sup-
port to a wealth of neurochemical evidence, which by itself could not be
regarded as definitive.

In future studies, it should not prove difficult to demonstrate whether or
not particular receptors mediating synaptic excitation are of the NMDA or
non-NMDA type. The involvement of NMDA receptors in spinal synaptic
excitation is already well documented and it will be important to investigate
their role elsewhere in the central nervous system. To this end the NMDA
antagonist of choice is APV. Pending the discovery of selective antagonists
for non-NMDA receptors, excitation that is resistant to APV but depressed
by DGG and/or PDA can probably be assumed to be mediated by the
kainate or quisqualate type of receptors.

Identification of the transmitters acting at different excitatory amino acid
receptors is likely to be a more difficult problem. This may ultimately
depend on whether consistent correlations can be obtained between strong
neurochemical evidence favoring particular transmitters in defined path-
ways and discrete pharmacological profiles for synaptically evoked excita-
tion in those pathways. The strongest neurochemical evidence for an acidic
amino acid transmitter is probably that obtained by Collins (259, 280) for
aspartate as the transmitter released by terminals of the lateral olfactory
tract (see Table 3). The pharmacology of this pathway is currently under
investigation. High sensitivity to APV of monosynaptic excitation evoked
by stimulation of the lateral olfactory tract would add support to the
suggestion (100) that L-aspartate may be the transmitter acting at NMDA
receptors.

Problems associated with the binding of L-glutamate and L-aspartate to
brain membranes may be diminished by the likely development of highly
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Table 3 Evidence supporting transmitter roles for aspartate or glutamate in specific pathways

Lesion study

Reduction in

CNS region Proposed  Synaptic Type of Endogenous Stimulated
or system transmitter release lesion level release Uptake
Cerebral cortex
Afferent pathways GLU 240, 241
Efferent pathways GLU Cortical 234 (thalamus) 242,243 63,158,235, 247
ablation 244 (striatum)  (striatum)  (striatum®)
234, 245 (lateral 234 (amygdala,
geniculate body (substantia nigra &
and superior nucleus accumbens)
colliculus) 234 (thalamus)
246 (inferior col- 234, 245 (lateral
liculus) geniculate body and
superior colliculus)
Basal ganglia
Striatum, intrinsic GLU Kainate 248 235,248
Hippocampus
Pyramidal cell GLU 249¢ Kainate or 250, 251 250, 251, 293
projection to axotomy
lateral septum
Perforant path GLU 252,292  Ablation of 253 32,254 64,253
entorhinal
cortex

Antagonism of
synaptic excitation?

220 (DAA), 226 (GDEE)
227 (GDEE, striatum)
226 (GDEE, cortex)
219, 220 (HAP, DAA,
cortex, thalamus,
cuneate nucleus)

222,229 (GDEE)
255,256 (APB, HAP)
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Table 3 (Continued)

Lesion study

Reduction in

CNS region Proposed  Synaptic Type of Endogenous Stimulated Antagonism of
or system transmitter  release lesion level release Uptake synaptic excitation?
Hippocampus (cont’d)
Schatfer collateral- ASP/GLU 257,258° Ablation of 254 64 217 (APV, DGG)
commissural path contralateral 222 (DAA)
hippocampus 228 (GDEE)
or axotomy 256 (APB, HAP)
Olfactory
Lateral olfactory ASP 2594 Olfactory 259,280 259 260 (APB, GDEE, DAA)
tract bulbectomy
Visual®—h
Retinal path to ASP/GLU Retinal 261 262 (GDEE, nuciferine)
optic tectum® ablation
Auditoryj
Primary afferent to ASPX/GLU Cochlear 263-265 223, 224 (DAA, DAS,
cochlear nucleus nerve section HAP)
Cochlear 27 289
ablation!
Mutant 266
Cerebellum
Granule cell GLU X ray 267-269 270 268 225 (DAA)
parallel fibers Virus 271 271
Kainate 272,273 272
Mutant 274

061
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Cerebellum (cont'd)

Climbing fibers ASP 3-Acetyl 275-277
pyridine

Spinal cord™

Descending tracts ASP" Transection 278
Excitatory ASP Ischemia 279, 291 100, 111 (DAA); 94
interneurons (DAS, APB); 91,92

(APV); 96,97, 112
(DGG); 60, 104 (PDA),
see also 88, 93

2 For antagonist abbreviations see Table 1.

b Development of high affinity uptake system for glutamate correlates with ontogeny of corticostriatal pathway (176).

C Preloaded D-aspartate.

d Glutamate release from olfactory cortex following stimulation of lateral olfactory tract (54, 281) has been attributed by Collins et al (290)
to release from interneurons rather than terminals of afferent fibers.

€ Visual pathway stimulation of rat lateral geniculate neurons is blocked by excitant amino acid antagonists (221).

f APB selectively blocks ‘‘ON” responses in mudpuppy retina (M. M. Slaughter and R. F. Miller, manuscript submitted).

8 Light stimulation of retina depresses L-aspartate, but not L-glutamate, release suggesting that L-aspartate is a retinal transmitter (282).

!‘ DA A blocks photoreceptor transmission to horizontal cells in carp retina (283).

I Pigeon.

j Glutamate released specifically from toad skin containing lateral line organs following water-jet stimulation suggests that glutamate may be
the vestibular hair cell transmitter (284, 285).

k Aspartate concentrations parallel cochlear nerve terminal distribution (25, 26).

1 Glutaminase and aspartate aminotransferase are concentrated in cochlear nerve and are decreased after cochlear ablation (30).

MNo evidence is presented for the primary afferent transmitter to spinal neurons. Although regional variation in spinal cord glutamate levels
parallels the distribution of primary afferent terminals (24), synaptically evoked release of glutamate (287) and antagonism of synaptic excita-
tion (102) fail to differentiate convincingly between the activity of primary afferent terminals and excitatory interneurons. A lesion study has
provided anomalous data in that a reduction in glutamate uptake following axotomy was accompanied by increased levels of the amino acid
(288). However, reduction in glutamate uptake following brain stem lesions suggests that glutamate or aspartate is the transmitter of baroreceptor
afferents (294).

N Stimulation of descending tracts caused increased release of glutamate (286).
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potent, receptor-specific antagonists in radioactive form. Such agents would
be useful not only to demonstrate regional variation in excitatory amino
acid receptor sites but conceivably also for the development of new drugs
acting at these sites, and for investigating the extent to which known drugs
may exert their effects by competing with excitatory amino acid transmit-
ters for receptor occupancy.

It is more than two decades since excitatory amino acids first emerged
as possible transmitters in the vertebrate central nervous system. With the
question of whether or not such substances do indeed exercise this function
now apparently answered beyond reasonable doubt, and with an armory of
new pharmacological and neurochemical tools increasingly available, our
knowledge and understanding of this type of central synaptic excitation
seems likely to be entering a phase of rapid growth.
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